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Axisymmetric flow of a viscous fluid near the 
vertex of a body 
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Axially symmetric motion of a viscous fluid in a cone is considered on the basis 
of the Stokes assumption. Near the apex of the cone the solution obtainedreveals 
features quite similar to those of that near a sharp corner in two dimensions, 
which has been discussed already. A n  infinite sequence of eddies is induced near 
the apex for values less than about 80.9' of the semi-angle of the cone, which is 
measured from the symmetry axis lying in the fluid. The solution found by Pell 
& Payne for a spindle in a uniform stream offers a good illustration of the general 
discussion. Special attention is paid to the angle 120' for the spindle as well as 
the cone. The limiting case of zero angle of the cone corresponds to the flow 
occurring in a circular cylinder. 

1. Introduction 
The general features of two-dimemional flow of an incompressible viscous 

fluid near a sharp corner have been discussed by Moffatt (1964). Later, problems 
related to such corner eddies were also solved by Schubert (1967) and by the 
author (1976). A comparable problem in three dimensions is the flow near the 
apex of a cone. In this paper a solution of the Stokes equations of motion is 
presented for axisymmetric flow in a space with a conical boundary. The solution 
near the apex reveals features similar to Moffatt's flow. When the boundary is 
rigid, the flow sufficiently near the apex consists of an infinite sequence of eddies 
for certain values of the semi-angle of the cone, which are in general less than 
about 80.9'. The Stokes assumption is valid sufficiently near the apex of the cone 
and the behaviour of tbe fluid there is to some extent independent of the nature 
of the far field. 

The problem of a spindle in a uniform stream has been solved by Pell & Payne 
(1960). This solution may offer the only example of the above situation other 
than blunt bodies such as a spheroid. I n  addition, it is of interest to compare the 
drag on spindles of various vertex angles, particularly 120°, with'the value 
obtained by Bourot (1974) for the optimum profile with smallest drag, though 
details on this are beyond the scope of this paper. The solution given by Takagi 
(1973) for a special torus without a central opening is a limit of the problem of a, 
spindle and is closely related to the limiting case of a cone of zero angle, which 
gives a possible motion occurring in a circular cylinder. 
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738 S. Wakiya 

2. Axisymmetric field with a conical boundary 

function @. The equation for p? in the Stokes regime is known to be 
The axial symmetry of the flow field permits the introduction of a stream 

LZ1+ = 0. (2.1) 

In spherical co-ordinates (p, 0 )  with the polar axis as the axis of symmetry, the 

where t = cos8. It has been shown by Payne (1969) that a solution of (2.1) can 
be built up using the functions (bk which satisfy the equation 

L k ( b k  = 0. (2.3) 

For odd values of k = 2rn + 1, solutions which are regular on the axis of symmetry 
can generally be found in the separated form 

(2.4) 

for any number Y, real or complex, where P,(t) is the Legendre function of the 
first kind of degree Y. 

d m  
#2m+l = A,+,Pu*e+?n(t) (m = 0,172, *..), 

The general solution to (2.1) of the same separated form as (2.4) is 

@ = r2((b1 + $3) = W { A l  ew + A ,  e+I(t)}7 (2.6) 

where T = psin8 and the prime denotes differentiation with respect to t .  Since 
P, = P-v-l and P;+l = (Y + 1) P, + tP;, we may use the alternative representation 

(2.6) $h = +[up” + b/p’+l] {AP,(t) +BtPi(t)], @(v) B - 4, 
where a, b, A and B are arbitrary constants. Here and elsewhere W denotes 
‘the real part of’. In the particular cases Y = 0 and Y = 1, the form of @ de- 
generates to 

@ = (apa + bp) (A’t2 +B’t + C) (2.7) 

and @ = (ap3+b)(A‘ts+B’t+C). 12-81 

These solutions with separated variables are relevant to problems involving 
a conical boundary. The boundary is defined by to = cos 8, such that 8 < 8, in the 
fluid. According as 0,s 90” (to 3 0),  inner or outer flow may be considered. The 
velocity components of the fluid are 

The solutions with W ( Y )  < 2 in the expression @ = p”f,(O) give velocities which 
are infinite at the origin and tend to zero as p + 00, and so describe the far-field 
flow when some disturbance is present near the origin. Nevertheless, if we conhe 
ourselves to the situation in which the relative velocity vanishes on the cone 
surface, these solutions do not produce flows of any practical interest. 
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FIGURE 1. Curves of H(v)  = P,(to) {to<(to) +P~(to) ) - to{P~( to) )*  to illustrate the locations 
of oritid angles at which the first or second root of H ( v )  = 0 is a double root. (a) Heighbour- 
hood of 0, = 8lo-9S0. (b)  Neighbourhood of 0, = 166O. 

47-2 



740 S. Wakiya 

The only exception under this condition is the flow given by (2.8), i.e. 

$b = -A(t- to)2( t+2to) .  (2.10) 

vp = 3Ap-2(t2-t3, v, = 0, (2.11) 

The velocity corresponding to this is 

and proves to be a complete solution both for the inner flow (t  > to > 0) generated 
by a source of strength 27rA (1 - to)2 (1 + 2t0) at the apex of a cone and also for the 
outer flow (to > t > -to, to > 0) generated between two equal-sized cones facing 
each other with a common apex by a source of strength - 87rAc at the common 
apex. 

3. Solution near the apex of a cone 
Consider the flow induced near the apex of a cone or a body with a conical 

front fixed in space by motion at a large distance. It is supposed that in the 
neighbourhood of the apex, which is at the co-ordinate origin, the stream function 
can be expanded as 

+ = p + y ~ , ,  q t )  + B,, t ~ ; , ( t ) )  e, (3.1) 
tt- 1 

where the v, are ordered such that 0 c 9?(vl) c W(v2) < ..., because the velocity 
should vanish at the origin. The A, and €3, are dimensional constants. As 
discussed by Moffatt for the two-dimensional case, the Reynolds number based 
on distance from the origin is small for a sufficiently small p and the Stokes 
approximation is valid regardless of the nature of the motion at  a large distance. 
If the boundary conditions 

@ = a$pt = 0 at t = to (3.2) 

are imposed, the v,, must be the roots of the equation 

In addition to conditions (3.2) it is necessary that 

because of the symmetry of the field, but this is satisfied by (3.1) auto- 
matically. 

The value of Y satisfying (3.3) of course depends on the (given) value of to. 
Although it is difficult to treat (3.3) analytically, it may be observed that (3.3) 
has an infinite number of root,s, of which none is real for 0, less than about Sl', 
only one can be real for 0, between 98' and 155O approximately and so forth 
(figure 1). For the particular case of a plane, i.e. to = 0 (0, = goo), all integral 



Axisymmetric $ow near the vertex of a body 741 

4 (deg) Vl 

0 
30 8.064 + 2.614i 
45 5.240 + 1.569i 
60 3.841 + 0.9599; 
75 3.017 + 0.4369.3 
80.8 2.788 + 0.0420i 
80.9 2.749 
90 2 
98 1.642 
105 1-397 
120 1 
135 0.7115 
150 0.4894 
155 0.4255 
165 0.3071 

~ 

8 0  v1 

4*466+ 1:4673 
4.22 + 1.37i 
4.12 + 1-23i 
4-02 + 1.005i 
3-95 + 0.571i 
3.93 + 0.059i 
3.88 
3-14 
2-81 
2.56 
2.09 
1.68 
1.28 
1.15 
0.884 

~ ~ 

lnh, Ink, 80 va 
7.693 + 1.726i 

1.20 9.7 
2.00 10.5 
3.27 12.6 
7.19 21.7 

74.8 209 

lnh, Ink, 
10.6 30.9 
8-66 21.6 

10-3 23.4 
20.1 38.9 

9.327 + 1.905i 
6*892+ 1.219; 
5.441 + 0.6689i 

2.819 
3 
3.102 
2*912+0*2957i 
2.497 + 0.3630i 
2.181 +0*30626 
1.938 + 0.1564i 
1.818 
1.496 

7-33 + 1*50i 
7.22 + 1.2% 
7-12 + 0-876i 

3.98 
4.7 1 
5.31 
5-34 + 0.5422 
5.23 + 0.760i 
5*14+0*721i 
5-07 + 0.409i 
4.92 
4.23 

TABLE 1. Roots of (3.3) with small positive real part for various cone 
angles. Length and velocity scale factors are added for eddies. 

values of v except v = 1 satisfy (3.3) and there is no root other than these. This 
can be seen from the detailed expression 

1c. = X ~ ~ ~ + ~ [ B 2 n  tP;n(t) +%+I P { G n + l ( t )  -&n+l(t)}I sin2 8 
n=1 

= X pqn+l) sin2 8 cos2 8{an P( 1 - n, n + Q, 8, t 2 )  
n= 1 + b,ptF( 1 - n, n + Q, Q, t”}, (3.6) 

where P denotes the hypergeometric function and an and b, are constants 
depending on the particular field. 

Examining the asymptotic form of vn for large n may facilitate the above 
observation. For sufficiently large I vI , (3.3) tends asymptotically to 

cos(2v+1)8, = -vsin28, for E < 8, Q n - E  ( E  > 0), (3.7) 

where cos8, = to. Clearly this equation admits no real solution for sufficiently 
large values of 1.1, provided that sin 28, + 0. The complex solution of (3.7) may 
be determined by writing v8, = a + i/3, whereupon (3.7) gives the two real equa- 
tions 

cos (21, + 0,) cosh 2/3 = ( - a/8,) sin 28,, 
sin (2v + 8,) sinh 2 8  = (@,) sin 28,. (3.8) 1 

Solutions of large modulus have the asymptotic forms 

an N nn+&(n-8,), /3,, - +ln{2nnsin(28,)/8,} for 8, c in, (3.9) 

a, N nn-*(n-O;), /3, - &ln(2nnsin(28;)/(n-8;)} for 8, > +n, (3.10) 

where 8; = n- 8,. This ensures that (3.3) has an in6nite number of complex roots 
provided that 8, =l= in. For the particular case 8, = *n, (3.7) reduces to 

cos *(2u + 1) 77 = 0. (3.11) 

Clearly this is satisfied only by integral values of u,. 
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In the special case v = 1, conditions (3.2) give 

@ = Ap3(t - to)2.(t + 2t,), (3.12) 

from (2.8). Hence the configuration t,, = -+ (8, = 120") is the only one for 
which (3.12) also satisfies the condition ( 3 4 ,  the velocity then being 

wp = &4p( l -  4t2), = $Ap( l+  2t)2 tan 48. (3.13) 

It is noted that wp = 0 everywhere on the line t = Q. 
Sufficiently near the origin the &st term of (3.1) dominates and asymptotically 

gives 
@ N pvi+2{Al P,,(t) +B, tP:,(t)) sin2 8, (3.14) 

provided that A,  + 0 and B, $. 0. Thus interest centres chiefly on v,, and the 
values of this quantity were calculated for some cone angles. As 0, increases from 
0 to IT, the value of a(v,) decreases monotonically. Table 1 shows these values 
of v, and 0, v,. If vl = a, + is, is a complex root, F, = a, - $9, is also a root. 
Thus the solutions occur in conjugate pairs and (3.14) is mitten as 

@ N (p/po)"1+2sin 092 [C exp {iP& (PlPO)) it, P:,(t,) P,,(t) 
- P,,( to)  tP:,(t))l, (3.15) 

where C is a complex constant and po is a length scale which is determined by 
conditions in the given far field. In the same way as in the two-dimensional 
case, it can be seen that (3.15) implies an infinite sequence of eddies near the 
origin. A short summary will thus suffice because of the qualitative similarity. 

If In (p/p,) + V(8)  = 0 is a curve on which + = 0, then @ is also zero on the curve 

ln(p/po)+ V(0)+nn/P1 = 0 (n = I ,% ...). (3.16) 

Enclosed within each such curve is an eddy. The distance from the origin to the 
curve is p, = poexp ( - V )  exp ( - nn/,8,), so all the eddies are geometrically 
similar and their dimensions fall off in a geometric progression with ratio 
h, = exp(7r/pl). Since the magnitude of the velocity is of order (p,/p,)"l, the 
ratio of the intensities of consecutive eddies is k, = exp (na,/P,). The values of 
h, and lc, are also shown in table 1. Each of these eddies is interpreted as the 
cross-section of a vortex ring surrounding the axis of symmetry. Since the 
number of real solutions to (3.3) is finite for 0, > 81" except for 8, = go", under 
certain conditions the leading coefficients in (3.1) might vanish and eddies might 
appear for angles greater than 81". 

It is expected that not only is the flow related to the conical boundary, but 
in general the solution near the stagnation point of any body may be expanded 
in a functional form similar to (3.1), the v, again being the roots of (3.3) and 
A ,  and B, depending on the configuration of the body in addition to the nature 
of the distant field. Axisymmetric flow past a spheroid which is uniform far 
from the body is well known and gives a proof for the case to = 0 (0, = 90"). 
For example, it is readily seen that near the stagnation point of a sphere 

@ iUr2(p/b)2 C O S ~  8. (3.17) 
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For the limiting case of disk, the term proportional to (p/b)2 vanishes and 
asymptotically 

q9 - (2/3n) Ur2(p/b)z~~~36) .  (3.18) 

Here b is the radius of the sphere as well as of the disk, U is the velocity of the 
undisturbed flow at infinity and r = psino. The solution for a spindle in a uni- 
form stream has been given by Pell & Payne (1960) and seems to be a nice example 
for angles other than 0, = 90”. In this connexion the flow past a spindle will 
be considered again in the next section. 

4. Flow past a spindle or a round mat with a hollow navel 
Bipolar co-ordinates (5,q) in a plane are defined by 

where (z ,r)  are the cylindrical co-ordinates with the z axis as the symmetry 
axis. A spindle is described by 7 = qo. Although when qo < &r the body is a 
round mat with a hollow navel rather than a spindle, for brevity any body with 
q = qo will be called a spindle. The exterior region is defined by -00 < 5 < 00, 

0 < q c qo, the point (6 = 0,q = 0) corresponding to infinity. Let the undisturbed 
flow have a uniform velocity U in the z direction ; then the solution for the spindle 
due to Pell & Payne is given in our notation by 

11. = 8Ur2 [ 1 - (cosh 6 - t )4  {A(h) KA(t) + B(h) tKi(t)} cos dh , (4.2) 1 
where 

and H ( 4  = ~ A ( t o ) { t o m o )  + K i ( t o ) } - t o { ~ ~ ~ ~ o ) } 2 .  (4.3c) 

dKA( - t ) /d(  - t ) .  

In the above representations t = cos q, KA = P+$A, which is a Legendre function 
of complex degree and is known as a conal function, and Ki(  - t )  formally denotes 

For the sake of the discussion here, we may alternatively write 11. in the form 
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Here the relations 

2 P,( - t )  = P,(t) cos m - - &,(t) sin vm 
?T 

have been used. In particular, when to = 0, the expression (4.4) becomes 

e-vEdA. (4.7) 
OD Pv(-t)-P,(t)+2tPi(t) 

sin nv e-8  1 c2U sin2g $=--- 
2* (Cosh[-t)* -a 

The integral in (4.4) may be evaluated by the theorem of residues to yield a 
representation of $ which is convenient for discussing the flow near the vertices 
[ = k 00. In  the upper half, say, of the complex h plane, if h is a root of H(A) = 0 
then so is - A, corresponding to v and i j ,  respectively. A bar denotes a complex 
conjugate. Pure imaginary values of h correspond to real values of v. From 
careful examination, of H(v)  and a,,@), it can be seen that v = 0 is not a pole 
of the integrand, v = 1 is a pole only if to = -* (go = 120') and integers other 
than these constitute all the poles for to = 0 (qo = 90"). In  this case (4.7) is rather 
convenient for giving the solution for a sphere exactly. For non-zero values of 
to, any root, complex or real but not integral, of the equation H ( v )  = 0, i.e. (3.3), 
is a simple pole of the integrand. Thus, using the values of v, at these poles, $ 
can be represented as a series. 

Sufficiently near a vertex of the spindle we have the asymptotic form 

because p = 2ce-151 approximately, where p is the distance from the origin, 
vl = a,+i/3, is the root of (3.3) with smallest positive real part, and g = for 
real roots (pl = 0) and g = 1 for complex roots. For the spindle with qo = 120", 
(4.8) is reduced to 

because v1 = 1. As may be seen from (3.15), eddies are observed for complex 
roots, which are inevitable for go less than about 81". 

The force exerted on the spindle has been calculated by Stasiw et ul. (1974) 
for qo > 90' in 6" steps. Their numerical values seem, unfortunately, to be 
incorrect for a reason which will be given later, and so the force was recalculated 
using (Payne & Pel1 1960) 

$ N & ( u / c ) p q 1 - t ) ( 1 + 2 t ) 2  (4.9) 

" d  d 
= 4mpcuf0 [z (( 1 - t 2 )  K{(t))  KA( - t )  - (1 - t 2 )  K{(t)  z KA( - t ) ]  

€=to 

(4.10) 
dh  

B(h)  cosh nh ' X 

where ,u is the coefficient of viscosity of the fluid. Some numerical values of 
D/67r,ubU are listed in table 2, in which u is half the largest thickness of the 
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FIUURE 2. Diagram of the typical bodies involved. (a) Spindle. 

(b) Round mat. (0)  Closed t o m .  

DI6npbU 
& 

qo (deg) alb Spindle Spheroid 
160 3.732 1.473 1.5468 
120 1.732 1.101 1.1492 
90 1 1 1 
60 0.667 0.958 0-9352 
30 0.536 0-938 0.9115 
0 0-5 0*936* 0.9053 

c, 
c---h-----\ 
Spindle Spheroid 

1.016 0.9972 
0.960 0.9569 
1 1 
1.053 1.0705 
1.095 1.1222 
1.116 1,1406 

TABLE 2. Drag coefficients for spindles of various thickness. The starred 
value is for 8 closed torus and is due to Taka@. 

spindle measured along the mainstream and b is the semi-axis perpendicular to 
it, so that a = c for qo 3 go", a = c/sin qo for qo < 90" and b = c (1 -t cos qo)/sin qo. 
Tbe results for spheroids are compared with those with the same value of a/b. 

The volume of a spindle may be shown to be 

2nba 
{ (n  - qo) cosqo + (1 - +sin2q0) sin%}. 

(1 + COB 7 0 ) s  
(4.11) 

We also take a particular interest in the ratio Cf of the drag to that on the sphere 
of equal volume, in connexion with the fact that the profile of given volume 
having the smallest drag in a uniform flow should have conical front and 
rear ends of angle 120" (Pironneau 1973). This coefficient Cf for a spindle of 
angle 120° is indeed greater than the coefficient for the optimum profile, which 
was given by Bourot as C, = 0.96426, but is still fairly small (table 2 ) .  The values 
of the drag coefficient given by Stasiw et at. disagree with those in table 2, being 
too large, and also are at variance with the conclusion of Pironneau (their values 
of C' increase monotonically with increasing qo). 
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5. Flow occurring in a circular cylinder 
The limiting form of (3.3) for So+ 0 can be obtained using the relation 

lim vnP;n(cosx/v) = J,(z), 

where P;" is an associated Legendre function and J, is a Bessel function. The 
limit is taken such that 8,v = c, a finite value, as 8,+0; then in the limit the 
equation for c is found to be 

V+DD 

C{4(S)+Jf(C))- 2Jo(oJl(c) = 0, S * 0. (6.1) 

Equation (2.3) is rewritten as 

referred to the cylindrical co-ordinates (2, r )  with the x axis as the symmetry 
axis. In order to have a stream function appropriate to the limiting problem we 
may again start from solutions to (6.2) with k odd of the form 

= e-rI*lJ,(yr)/(yr)m (m = 0,1,2,  ...). (5.3) 

Then instead of equation (3.1) for $ we obtain 

which is supposed to give a possible motion occurring in a circular cylinder. The 
boundary conditions (3.2) at r = r,, the radius of the cylinder, just yield (5.1) 
for determining ynr, = 5. When (61 is sufficiently large, (5.1) is reduced to 

(6.6) 

en N g{(2n+l)n+iln(4n7r)}. (5.6) 

cos 2c = - 2[; 
then for large n, [,, will have the asymptotic form 

The solution (5.4) was also obtained by Fitz-Gerald (1972), who calculated the 
first ten roots of (6.1), though for another purpose. 

The roots y1 r, = p1 & iql with smallest positive real part (table 1), appearing 
in conjugate pairs, give the asymptotic solution 

$ 2r2 exp ( -P1l4 /To) arexp ( - iq1 1x1 Ira) {A1 Jo(Y1 r )  + B1 Jl('Y1 r)/'Y1 .)I, (5.7) 

at a large distance from a disturbance which is present near the origin. Clearly 
this solution implies a sequence of eddies all of the same size of diminishing 
strength. Consequently the flow field is made up of a file of vortex rings surround- 
ing the central axis. The distance between the centres of adjacent rings, with 
mutually reciprocal rotational velocities, is 

nro/ql = 2.142r0. (5.8) 

The solution for a closed torus without a central opening moving with velocity 
U in the direction of the axis of symmetry is comparable with that near a cusped 
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corner in two dimensions, treated by Schubert, and is also closely related to 
the above situation. The stream function was obtained by Takagi (1973) in 
terms of tangent-sphere co-ordinates (6, T,I, $) related to the cylindrical system 
(2, r, $1 by 

z = cr/(E2+q2),  r = cE/(E2+q2) (0 < E < 00, -a < < m,O < (p c 2n), 
c > 0, 

and in our notation is given by 

with Al(lE0) = ~ E O { G V E O )  - w g o ) l  - 2 1 0 V t o )  U E 0 ) 2  

A2(ZEO) = ~ 5 0 { ~ o ( Z E o )  KO(ZE0) + 11VEO) Kl(Zt0)I - 211fKO) K0VEO)Y 

where I, and K ,  are the modified Bessel functions of the first and second kinds 
of order n, and the surface of the torus is given by 5 = Eo. 

In order to have a suitable form near the origin 7 = a, $may again be evaluated 
by contour integratron in the upper half, say, of the complex I plane. Taking 
ZEo = icy we have 

where p = (x2  + r2)b and 

Al(L3 = +mxY) + JK))  - 2Jo(!3 Jl<C,l. 
The explicit form of Fc(c) used for contraction will be evident without display. 
If I is a pole of the integrand, so is - &  corresponding to and C, respectively. 
The point c = 0 is not a pole and all the poles are found from (6.1). Consequently 
(6.9) can be expanded like (5.7) by the same procedure as in the case of the 
spindle. 
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